What Is Intelligent Blind Signal Processing and Why It Is Important in Brain Science?
نویسنده
چکیده
The Open Information Systems Laboratory has general interest in intelligent blind and sparse signal processing and nonlinear system theory approaches in computational neuroscience, with the emphasis on artificial neural network models with underlying components (processing units) and self-organizing behavior. Underlying this interest is a belief that biologically plausible artificial neural systems and associated learning algorithms play key roles in understanding information processing problems involved in advanced brain functions and neural networks mechanisms.
منابع مشابه
A Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملA Novel Multi-user Detection Approach on Fluctuations of Autocorrelation Estimators in Non-Cooperative Communication
Recently, blind multi-user detection has become an important topic in code division multiple access (CDMA) systems. Direct-Sequence Spread Spectrum (DSSS) signals are well-known due to their low probability of detection, and secure communication. In this article, the problem of blind multi-user detection is studied in variable processing gain direct-sequence code division multiple access (VPG D...
متن کاملIntelligent Auto pilot Design for a Nonlinear Model of an Autonomous Helicopter by Adaptive Emotional Approach
There is a growing interest in the modeling and control of model helicopters using nonlinear dynamic models and nonlinear control. Application of a new intelligent control approach called Brain Emotional Learning Based Intelligent Controller (BELBIC) to design autopilot for an autonomous helicopter is addressed in this paper. This controller is applied to a nonlinear model of a helicopter. This...
متن کاملImplementing a Smart Method to Eliminate Artifacts of Vital Signals
Background: Electroencephalography (EEG) has vital and significant applications in different medical fields and is used for the primary evaluation of neurological disorders. Hence, having easy access to suitable and useful signal is very important. Artifacts are undesirable confusions which are generally originated from inevitable human activities such as heartbeat, blinking of eyes and facial ...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کامل